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This paper integrates resonant nonlinear Schrödinger equation (RNLSE) with power law nonlinearity and time dependent 
coefficients. The first integral method (FIM) is applied to reach the optical solitons of RNLSE with power law nonlinearity 
and time dependent coefficients which are the terms of velocity dispersion, linear and nonlinear terms and also resonant 
one.  
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1. Introduction 
 

The dynamics of optical solitons propagating through 

optical fibers for trans-continental and trans-oceanic 

distances is governed by the nonlinear Schrödinger's 

equation (NLSE). This NLSE is derived from Maxwell's 

equation in electromagnetic by the aid of multiple-scale 

perturbation analysis. The NLSE appears, in the literature 

of optical solitons, with several forms of nonlinearity that 

depends on the context where it is studied. The most 

known mathematical modeling of optical systems 

generally is expressed by types of NLSE. The details of 

NLSE are given in the studies on nonlinear optics [1-50]. 

It is crucial to reach general solutions of these 

corresponding nonlinear equations. Thus, the general 

solutions of these equations provide much information 

about the character and the structure of solitons that 

governs the technological advances in telecommunications 

industry. Many effective methods have been improved to 

provide much information for scientists and engineers. 

Some of these methods are extended tanh, G’/G-

expansion, Jacobi elliptic function, functional variable, F-

expansion, ansatz approach, first integral, Kudryashov, 

and trial equation methods [1-50]. All of these methods are 

effective methods for acquiring traveling wave solutions 

NPDE. 

The FIM initially has been successfully applied 

earlier, to solve Burgers-KdV equation, by Feng [16]. This 

method has also been successfully implemented in various 

forms of nonlinear evolution equations, including 

fractional evolution equations that resulted in the retrieval 

of a spectrum of novel solutions. During recent years, 

many studies on this method have been made. Raslan [39] 

has used this method for the Fisher equation. Tascan and 

Bekir [43] have used this method for Cahn-Allen equation. 

Abbasbandy and Shirzadi [1] have investigated Benjamin 

Bona-Mohany equation by this method. Jafari et al. [23] 

and K. Hosseini et al. [24] has researched w.r.t for Biswas-

Milovic equation and KP equation so on [22], [41]. 

This paper discusses a version of NLSE that is known 

as resonant NLSE (RNLSE) which also yields soliton 

solutions. There are three integration schemes that are 

applied here. They are first integral method, generalized 

Kudryashov’s scheme and the extended trial equation 

algorithm. These are schematically described in the 

following three sections and are successfully applied to 

RNLSE with various nonlinear forms. Soliton and other 

solutions therefore successfully emerged.  
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2. Governing Equation 
 

RNLSE [14], [15], [33-37] in dimensionless form [45] 

with time dependent coefficients is 
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             (1)  

 

where the terms      , ,a t b t c t  and  d t    are group 

velocity dipersion, nonlinear, resonant and also linear 

attenuation, respectively. We will discuss the equation (1) 

in the power law nonlinearity, which seems in the 

circumstances that form the setting for plasma physics, 

turbulance theory and nonlinear fiber optics, as following: 
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such that ctx   and ./)(   QQ  

where m is the nonlinear parameter. 

 

 

3. First integral method 
 

The proposed method can be summarized in the  

following steps: 

 

Step 1. The common nonlinear partial differential equation 

NPDE: 

( , , , , , , ) 0,t x xt tt xxW h h h h h h                      (3) 

using a wave variable ctx  transforms to the 

ordinary differential equation (ODE)  as 

 

( , , , , ) 0L H H H H                        (4) 

 

such that ( ) / .H H     
 

  

Step 2. The solution of ODE (4) can be written as: 

 

( , ) ( )h x t h                                       (5) 

 

Step 3.  Taking the following independent variables as  

 

( ) ( ), ( ) ( ) /H h G h              (6) 

 

a new system of ODEs are given by 
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             (7) 

 

Step 4. Due to lack of systematic theory which gives us 

some methods for finding first integrals, we will apply the 

Division Theorem (DT) to obtain  the integrals (7). This 

will reduce (2) to a first-order integrable ODE. Finally, an 

exact solution to (1) is obtained by solving this equation. 

 

3.1. Application to R-NLSE 

 

We use the following transformation  

 
 

 ,      
i x v t dt

h H e x w t dt


  
         

 

and get ODE system   

 

 2 0,w a H                           (8)       

 

                    2 2 1 2 0mv a H bH a c H             (9) 

 

 

Then, solving (8)  we get 

 

2w a                            (10) 

 

Further, we balance the term  2 1mH    with  ,H   and 

substitute the transformation 
1
mH Q  into (9) and obtain: 
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By using transformation ,Q G    we have 
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Assuming that d Qd   we get 
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(13) 

 

Further, it is supposed that ( )H   and ( )G     are non-

trivial solutions of Eq. (13) and 
0

( , ) ( )
r i

ii
F Q G a Q G


  is 

an irreducible function in the domain [ , ]C Q G   satisfying 

 

0

( ( ), ( )) ( ) 0
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i

i

i

F Q G a Q G 


                  (14) 

 

where ( )ia Q , ( 0,1,2, , )i r are polynomials of Q  and 

( ) 0ra Q  . Eq.(12)  is the first integral for system (13), 

owing to the DT, there exists  ( ) ( )g Q h Q G   in  [ , ]C Q G   

as: 
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Considering 1r   in Eq. (15) and equating the 

coefficients of  ( 0,1,2, , )iG i r   of Eq. (15, we have 
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Since ( )( 0,1)ia Q i  is polynomial of 1, ( )Q a Q  is a 

constant and  1( )
m

h Q    from (14). For convenience, it is 

obtained 1( ) 1.a Q   By equalization the degrees of ( )g Q  

and 0 ( )a Q  we conclude the degree of  ( )g Q  is equal to 

two. Then, we assume that 2

0 1 2( )g Q G G Q G Q   , we 

obtain from Eq. (17) as follows 

 
2

0 2 1 0( )a Q A Q AQ A                   (19) 

 

 Replacing  0 ( )a Q , 1( )a Q  and  ( )g Q  in Eq. (18) to 

separate the common factor of the same terms, then 

equating the coefficients of  
iQ  to zero, we have following 

cases: 
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setting (20-23)  into (14) with respectively, we have 
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If we solve the Eqs. (24-27) with respectively: Firstly 

we have the following rational solution from Eq. (24) 
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Where 0C   is constant and the solution of the Eq. (2) with 

the transformation 
1
mH Q  and   
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where    2w t a t  and  
2

2 0

2
.
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Secondly, we have the following solution from (25)    
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 and the original solution of the Eq. (2) is 
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where    2w t a t    and  
2

2 1

2
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  .   

Thirdly, we have the similar forms for Eqs. (26,27) so 

we will acquired the one of these equations. For the Eq. 

(27), we have the following dark solion solution 
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and the original solution of the Eq. (2) is 
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For another type solution of Eq. (27), if we 

choose
2

2

1
2

v a
G
    and  

   2
2

1
21

mb

G m a c  
   , then the Eq. 

(27) becomes 
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It is illustrated the solution of the Eq. (34) by Chen 

and Zhang [41], Eq. (34) has the following solution 

 

( ) tanh[ ] sech[ ].Q i                    (35) 

 

So we have the following dark-brigth optical combo 

soliton solution of the Eq. (2) 
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where    2w t a t  , 
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4. Generalized Kudryashov's Method 

 
In this section, we describe the generalized 

Kudryashov method [12] for finding traveling wave 

solutions of nonlinear partial differential equations 

(NLPDE) and subsequently will apply this method to solve 

the R-NLSE. 

We suppose that the given NLPDE for ),( txu  is in 

the form  

 

  0,=,...,,,,, ttxtxxxt uuuuuuP         (37) 

 
where P  is a polynomial. The essence of the generalized 

Kudryashov method can be presented in the following 

steps: 

Step-1: To find the traveling wave solutions of Eq. (37), 

we introduce the wave variable  

 

 ,=   ),(=),( vtxUtxu          (38) 

 
where v  is a constant to be determined later. Substituting 

Eq. (38) into Eq. (37), we obtain the following ODE   
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Step-2: Suppose that solution of the Eq. (39) can be 

written as follows:  
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 where )0,1,...,=( Niki  and )0,1,...,=( Mjl j  are 

constants to be determined later, and )(Q  is )1/(1 e . 

We recall that the function )(Q  is solution of equation 

[26]  
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Taking into consideration (40) along with (41), we have  
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and so on. Here, the prime denotes the derivative with 

respect to  . 

Step-3: Considering the homogeneous balance between 

the highest order derivatives and nonlinear terms 

appearing in ODE (39), We can determine a relation of 

M  and N . We can take some values of M  and N . 

Step-4: Substituting expressions given by Eqs. (40)-(43) 

into Eq. (39), we obtain a polynomial )(Q  of Q . 

Equating the coefficients of this polynomial to zero, we 

get a system of algebraic equations. Solving this system, 

we can find the values of unknown parameters. As a result, 

we obtain the exact solutions to Eq. (37). 

 

4.1. Application to R-NLSE (Kerr law) 

 

In this section, we apply the generalized Kudryashov 

method to solve the resonant nonlinear Schrödinger’s 

equation (45)  
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The Kerr law nonlinearity is the case when .=)( ssF  

This kind of nonlinearity typically arises in the context of 

water waves or nonlinear fiber optics when the refractive 

index of the light is proportional to the intensity. For Kerr-

law nonlinearity, the considered generalized RNLS 

equation is given by 
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 Under the travelling wave transformation  
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 we have  
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We will now analyze Eq. (47) to secure soliton solutions 

by generalized Kudryashov method. We substitute Eqs. 

(40) and (43) into Eq. (47). Then, we employ the balance 

principle and determine a relation of M  and N  as  
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the solution of Eq. (47) in the form 
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where 01 k  and 00 l . Substituting Eq. (49) into Eq. 

(47), we have a system of algebraic equations. Solving this 

system, we find the following results:  
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Substituting Eq. (50) along with )1/(1=)(  eQ   

into (49), and inserting the result into the wave 

transformation (46), we obtain the following solitary wave 

solutions to Eq. (45), respectively: 
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 Case-2: When 1=M  and 2=N  in Eq. (48), we have 

the solution of Eq. (47) in the form  
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where 02 k  and 01 l . Substituting Eq. (53) into Eq. 

(47), we have a system of algebraic equations. Solving this 

system, we find the following results: 
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Set-3.  
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where   is arbitrary constant. Consequently, we obtain 

the following exact traveling wave solutions to the R-

NLSE with Kerr law nonlinearity: 

By using the results in Eqs. (54)-(56), we find exact 1-

soliton solutions as  
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 By using the results in Eq. (57), we have solitary wave 

solutions as  
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   4.2. Application to R-NLSE (Power law) 

 

   The power law nonlinearity arises when ,=)( mssF  

where the parameter m  is referred to as the nonlinearity 

parameter. This kind of law appears in the context of 

plasma physics, turbulence theory and also sometimes in 

the case of nonlinear fiber optics. It needs to be however 

noted that one must have 2<<0 m  in order to avoid self-

focusing singularity and soliton collapse [45]. For power 

law nonlinearity, the R-NLSE takes the form  
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 For searching the one-soliton solution for the above 

model, we use the same wave transformation 
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 Substituting Eq. (63) into Eq. (62), we obtain ordinary 

differential equation:  
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 To obtain an analytic solution, we use the transformation 
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We will now analyze Eq. (65) to obtain soliton 

solutions by generalized Kudryashov method. We 

substitute Eqs. (40), (42) and (43) into Eq. (65). Then, we 

employ the balance principle and determine a relation of 

M  and N  as  
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 Case-1: When 0=M  and 2=N  in Eq. (66), then we 

can write the solution of Eq. (65) in the form  
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 where 02 k  and 00 l . Substituting Eq. (67) into Eq. 

(65), we have a system of algebraic equations. Solving this 

system, we find the following results:  
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 Substituting Eq. (68) along with )1/(1=)(  eQ   into 

Eq. (67) and using the transformation nVU 2

1

= , we obtain 

exact solution to Eq. (64). Consequently, we have the 

exact 1-soliton solutions to Eq. (62) as follows:  
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Case-2: When 1=M  and 3=N  in Eq. (66), we have the 

solution of Eq. (65) in the form  
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where 03 k  and 01 l . Substituting Eq. (71) into Eq. 

(65), we have a system of algebraic equations. Solving this 

system, we find the following results: 
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where   is arbitrary constant. Consequently, we have the 

exact 1-soliton solutions to the R-NLSE with power law 

nonlinearity as follows:  

1

2
2

2

2
24

(1 )( ) 2
( , ) =

24

n

i x t
n

n x t
x t sech

n

e

 
  

  




   
       
   

    
  

        (75)  

 

and 

 
1

2
2

2

2
24

(1 )( ) 2
( , ) =

24

n

i x t
n

n x t
x t csch

n

e

 
  

  




   
       
   

    
  

       (76) 

 

4.3. Application to R-NLSE (Parabolic law) 
  

For parabolic-law nonlinearity, 2( ) = ,F s s s    

where b and c are in general constants. Such a kind of 

nonlinearity appears also in fiber optics. In this case, the 

R-NLSE is  

 

 2 4 | |
| | | | = 0

| |

xx

t xxi d


       


 
     

 
(77) 

 

We use the same wave transformation 

 

 
 

( , ) = ( ) ,   = 2
i x t

x t U e x t
  

   
  

    (78) 

 

Substituting (78) into (77), we obtain ordinary differential 

equation:  

 

 2 3 5( ) = 0d U U U U             (79) 

 

By using transformation ,= 2

1

VU  Eq. (79) becomes 

 

 2 2 2

3 4

( )(2 ( ) ) 4

4 4 = 0.

d VV V V

V V

   

 

    

 
   (80) 

 

We will now analyze Eq. (80) to construct soliton 

solutions by generalized Kudryashov method. We 

substitute Eqs. (40), (42) and (43) into Eq. (80). Then, we 

employ the balance principle and determine a relation of 

M  and N  as 

 

= 1N M                         (81)  

 

 Case-1: When 0=M  and 1=N  in Eq. (81), then we 

have the solution of Eq. (80) in the form 

 

0 1

0

( )
( ) =

k k Q
V

l





                        (82) 
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 where 01 k  and 00 l . Substituting Eq. (82) into Eq. 

(80), we obtain a system of algebraic equations. Solving 

this system, we find the following results: 

 

Set-1.  

 

2

0

0 1 0 0

2

( ) 3
= 0, = , = , = ,

4( )

1
= 4

4

l d
k k l l

d

d

 


 

  






 

(83) 

 

Set-2.  

 

 

0 0

0 1 0 0

2
2

( ) ( )
= , = , = ,

3 1
= , = 4

4( ) 4

l d l d
k k l l

d
d

 

 


   



 


  


      (84) 

 

 where   is an arbitrary constant. Substituting Eqs. (83)-

(84) along with )1/(1=)(  eQ   into Eq. (82) and using 

the transformation 2

1

= VU , we obtain exact solution to 

Eq. (79). Consequently, we have the exact 1-soliton 

solutions to Eq. (77) as follows: 

By using the results in Eq. (83), we find  

 

 

1

2

1 24
4

2
( , ) = 1 tanh

2 2

i x d t

d x t
x t

e
   

 




 
     
 

     
   

               (85) 

 and  

 

 

1

2

1 24
4

2
( , ) = 1 coth

2 2

i x d t

d x t
x t

e
   

 




 
     
 

     
   

                (86) 

 

 By using the results in Eq. (84), we have  

 

 

1

2

1 24
4

2
( , ) = 1 tanh

2 2

i x d t

d x t
x t

e
   

 




 
     
 

     
   

              (87) 

 

 and 

 

1

2

1 24
4

2
( , ) = 1 coth

2 2

i x d t

d x t
x t

e
   

 




 
     
 

     
   

             (88) 

 

Case-2: When 1=M  and 2=N  in Eq. (81), then we 

have the solution of Eq. (80) in the form 

2

0 1 2

0 1

( ) ( )
( ) =

( )

k k Q k Q
V

l l Q

 




 


                  (89) 

 

 where 02 k  and 01 l . Substituting Eq. (89) into Eq. 

(80), we obtain a system of algebraic equations. Solving 

this system, we find the following results: 

Set-1. 

 

 

0 1

0 1 2

2

0 0 1 1

2

( ) ( )
= 0, = , = ,

3
= , = , = ,

4( )

1
= 4

4

l d l d
k k k

l l l l
d

d

 

 






  

 




 

       (90) 

 

 Set-2.  

 

 

0 1 0 1

0 1 2

2 2

1

0 0 1 1 2

0 1

2

(2 )( ) (2 )( )
= 0, = , = ,

3
= , = , = ,

4(2 ) ( )

1
= 4

4

l l d l l d
k k k

l
l l l l

l l d

d

 

 






  

   



 

 

 

(91) 

 

 Set-3.  

 

 

0 0 1

0 1

1

2 0 0 1 1

2
2

( ) ( )( )
= , = ,

( )
= ,    = , = ,

3 1
= , = 4

4( ) 4

l d l l d
k k

l d
k l l l l

d
d

 

 






   



  





  


            (92) 

 

where   is an arbitrary constant. Consequently, we obtain 

the following exact traveling wave solutions to the RNLSE 

with parabolic-law nonlinearity: 

By using the results in Eq. (90), we find exact 1-

soliton solutions as  

 

 

1

2

1 24
4

2
( , ) = 1 tanh

2 2

i x d t

d x t
x t

e
   

 




 
     
 

     
   

    
                  (93) 

 

 and  

 

1

2

1 24
4

2
( , ) = 1 coth

2 2

i x d t

d x t
x t

e
   

 




 
     
 

     
   

             (94) 

 

By using the results in Eq. (91), we have solitary 

wave solutions as  



958                          F. Tchier, B. Kilic, M. Inc, M. Ekici, A. Sonmezoglu, M. Mirzazadeh, H. Triki, D. Milovic, Q. Zhou, … 

 

 

1

2
2

0 1

0 1 1

1 24
4

2
(2 )( )

2
( , ) =

2
2 2 tanh

2

i x d t

x t
l l d sech

x t
x t

l l l

e
   









 
     
 

  
     

 
          

        (95) 

 

and  

 

 

1

2
2

0 1

0 1 1

1 24
4

2
(2 )( )

2
( , ) =

2
2 2 coth

2

i x d t

x t
l l d csch

x t
x t

l l l

e
   









 
     
 

  
     

 
          

      (96) 

 

By using the results in Eq. (92), we obtain exact 1-

soliton solutions as  

 

1

2

1 24
4

2
( , ) = 1 tanh

2 2

i x d t

d x t
x t

e
   

 




 
     
 

     
   

              (97) 

 and  

 

 

1

2

1 24
4

2
( , ) = 1 coth

2 2

i x d t

d x t
x t

e
   

 




 
     
 

     
   

             (98) 

 

 

   4.4. Application to R-NLSE (Dual-power law) 

 

   The dual-power law nonlinearity is formulated as 
2( ) = n nF s s s  , where b  and c  are in general 

constants. This law is a generalization of the parabolic law 

nonlinearity. In fact, setting 1=n , the dual-power law 

collapses to parabolic law nonlinearity. In this case, the R-

NLSE is  

 

 2 4 | |
| | | | = 0

| |

n n xx

t xxi d


       


 
     

 
(99) 

 

 Without loss of generality, we assume that the solution 

),( tx  to Eq. (99) takes the form  

 
 

( , ) = ( ) ,   = 2
i x t

x t U e x t
  

   
  

     (100) 

 

 Using this the wave transformation, we have 

 

     2 2 1 4 1( ) = 0n nd U U U U                (101) 

 To obtain an analytic solution, we propose a 

transformation denoted by .= 2

1

nVU  Then Eq. (101) is 

converted to 

 

 
 

2

2 2 2 2 3 2 4

( )(2 (1 2 )( ) )

4 4 4 = 0

d nVV n V

n V n V n V



    

   

   
     (102) 

 

We will now analyze Eq. (102) to construct soliton 

solutions by generalized Kudryashov method. We 

substitute Eqs. (40), (42) and (43) into Eq. (102). Then, we 

employ the balance principle and determine a relation of 

M  and N  as 

 

= 1N M                                 (103) 

 

 Case-1: When 0=M  and 1=N  in Eq. (103), then we 

have the solution of Eq. (102) in the form 

 

0 1

0

( )
( ) =

k k Q
V

l





                    (104) 

 

 where 01 k  and 00 l . Substituting Eq. (104) into Eq. 

(102), we obtain a system of algebraic equations. Solving 

this system, we find the following results: 

Set-1.  

 

0

0 1 0 02

2 2
2

2 2

(1 )( )
= 0, = , = ,

2

(1 2 )
= , =

(1 ) ( ) 4

l n d
k k l l

n

n n d

n d n





 
  



 

 
  

 

  (105) 

 

Set-2.  
 

,
4

=,
)()(1

)2(1
=,=

,
2

))((1
=,

2

))((1
=

2

2

2

22

00

2

0
12

0
0

n

d

dn

nn
ll

n

dnl
k

n

dnl
k






























(106) 

 

where   is an arbitrary constant. Substituting Eqs. (105)-

(106) along with )1/(1=)(  eQ   into Eq. (104) and 

using the transformation nVU 2

1

= , we obtain exact 

solution to Eq. (101). Consequently, we have the exact 1-

soliton solutions to Eq. (99) as follows: 

By using the results in Eq. (105), we have  

 
1

2

2

2
24

(1 )( ) 2
( , ) = 1 tanh

24

n

d
i x t

n

n d x t
x t

n

e


  

 




   
       
   

      
   

    



    (107) 

 

 and  
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1

2

2

2
24

(1 )( ) 2
( , ) = 1 coth

24

n

d
i x t

n

n d x t
x t

n

e


  

 




   
       
   

      
   

    



(108) 

 By using the results in Eq. (106), we obtain  

 
1

2

2

2
24

(1 )( ) 2
( , ) = 1 tanh

24

n

d
i x t

n

n d x t
x t

n

e


  

 




   
       
   

      
   

    



(109) 

 

 and 
1

2

2

2
24

(1 )( ) 2
( , ) = 1 coth

24

n

d
i x t

n

n d x t
x t

n

e


  

 




   
       
   

      
   

    



(110) 

 

Case-2: When 1=M  and 2=N  in Eq. (103), then we 

have the solution of Eq. (102) in the form  

 
2

0 1 2

0 1

( ) ( )
( ) =

( )

k k Q k Q
V

l l Q

 




 


                (111) 

 

where 02 k  and 01 l . Substituting Eq. (111) into Eq. 

(102), we obtain a system of algebraic equations. Solving 

this system, we find the following results: 

Set-1.  

 

0

0 1 2

1

2 0 0 1 12

2 2
2

2 2

(1 )( )
= 0, = ,

2

(1 )( )
= , = , = ,

2

(1 2 )
= , =

(1 ) ( ) 4

l n d
k k

n

l n d
k l l l l

n

n n d

n d n









 
  



 

 

 
  

 

  (112) 

 

 Set-2.  

 

0 1

0 1 2

0 1

2 0 0 1 12

2 2 2

21

2 2 2

0 1

(2 )(1 )( )
= 0, = ,

2

(2 )(1 )( )
= ,   = , = ,

2

(1 2 )
= , =

(2 ) (1 ) ( ) 4

l l n d
k k

n

l l n d
k l l l l

n

l n n d

l l n d n









 
  



  

  


 
  

  

(113) 

 

  

 

 

 

 

 

 

Set-3.  
 

0 0 1

0 12 2

1

2 0 0 1 12

2 2
2

2 2

(1 )( ) ( )(1 )( )
= , = ,

2 2

(1 )( )
= ,   = , = ,

2

(1 2 )
= , =

(1 ) ( ) 4

l n d l l n d
k k

n n

l n d
k l l l l

n

n n d

n d n

 

 





 
  



    


 


 
  

 

(114) 

where   is an arbitrary constant. Consequently, we obtain 

the following exact traveling wave solutions to the R-

NLSE with dual-power law nonlinearity: 

By using the results in Eq. (112), we find exact 1-

soliton solutions as  
1

2

2

2
24

(1 )( ) 2
( , ) = 1 tanh

24

n

d
i x t

n

n d x t
x t

n

e


  

 




   
       
   

      
   

    



 (115) 

 

 and  
1

2

2

2
24

(1 )( ) 2
( , ) = 1 coth

24

n

d
i x t

n

n d x t
x t

n

e


  

 




   
       
   

      
   

    



(116) 

 

By using the results in Eq. (113), we have solitary 

wave solutions as  
1

2
2

0 1

2

0 1 1

2
24

2
(2 )(1 )( )

2
( , ) =

2
4 2 tanh

2

n

d
i x t

n

x t
l l n d sech

x t
x t

n l l l

e


  









   
       
   

  
      

 
          



(117) 

 

 and  
1

2
2

0 1

2

0 1 1

2
24

2
(2 )(1 )( )

2
( , ) =

2
4 2 coth

2

n

d
i x t

n

x t
l l n d csch

x t
x t

n l l l

e


  









   
       
   

  
      

 
          

 

(118) 

 

 By using the results in Eq. (114), we find exact 1-

soliton solutions as  
1

2

2

2
24

(1 )( ) 2
( , ) = 1 tanh

24

n

d
i x t

n

n d x t
x t

n

e


  

 




   
       
   

      
   

     (119) 
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and  
1

2

2

2
24

(1 )( ) 2
( , ) = 1 coth

24

n

d
i x t

n

n d x t
x t

n

e


  

 




   
       
   

      
   

    



(120) 

 

 

5. Extended trial equation method 
 

In this section, we describe the extended trial equation 

method [20], [29] for finding traveling wave solutions of 

nonlinear partial differential equations (NLPDE) and 

subsequently will apply this method to solve the R-NLSE. 

We suppose that the given NLPDE for ),( txu  is in the 

form  

 , , , , , ,... = 0t x xx xt ttP u u u u u u                 (121) 

 

where P  is a polynomial. The essence of the extended 

trial equation method can be presented in the following 

steps: 

Step-1: To find the traveling wave solutions of Eq. (121), 

we introduce the wave variable   

 

   ( , ) = ( ),   =u x t U x vt                       (122) 

 

where v  is a constant to be determined later. Substituting 

Eq. (122) into Eq. (121), we obtain the following ODE 

 

 , , ,... = 0Q U U U                                 (123) 

 

 Step-2: Take transformation and trial equation as follows: 

 

 
=0

= i

i

i

U


                                              (124) 

 

 where 

2

1 0

1 0

( )
( ) = ( ) =

( )

=








  

  

 
  

 

    

     

                           (125) 

 

Using the relations (124) and (125), we can find  

 
2

2 1

=0

( )
( ) =

( )

i

i

i

U i


   
  

   
                         (126) 

1

2
=0

2

=0

( ) ( ) ( ) ( )
=

2 ( )

( )
( 1)

( )

i

i

i

i

i

i

U i

i i













          
  

   

  
   
   





     (127) 

 

where )(  and )(  are polynomials. Substituting 

these terms into Eq. (123) yields an equation of 

polynomial )(  of :  

  

1 0( ) = = 0s

s                      (128) 

 

According to the balance principle we can determine a 

relation of  ,  , and  . We can take some values of  , 

 , and  . 

Step-3: Let the coefficients of )(  all be zero will yield 

an algebraic equations system: 

 

= 0, = 0,...,i i s                                       (129) 

 

Solving this equations system (129), we will determine the 

values of  ,...,0 ;  ,...,0  and  ,...,0 . 

Step-4: Reduce Eq. (125) to the elementary integral form, 

 

 
0

( )
( ) = =

( )( )

d
d 

  
  

  
               (130) 

 

Using a complete discrimination system for 

polynomial to classify the roots of )( , we solve the 

infinite integral (130) and obtain the exact solutions to Eq. 

(123). Furthermore, we can write the exact traveling wave 

solutions to Eq. (121) respectively. 

 

5.1. Application to R-NLSE (Kerr law) 

 

We will now analyze Eq. (45) to obtain soliton 

solutions by extended trial equation method. We substitute 

Eqs. (124) and (127) into Eq. (47). Then, we use the 

balance principle and find that 

 

= 2 2                             (131) 

 

 When 4= , 0=  and 1=  in Eq. (131), we obtain 

 

0 1=U                                                    (132) 

 
3 2

1 4 3 2 1

0

(4 3 2 )
=

2
U

    



    
          (133) 

 

 where 04  , 0.0   Substituting Eqs. (132) and (133) 

into Eq. (47), collecting the coefficients of  , and solving 

the resulting system, we find the following results:  

 
2

0 0 0 1 01 1

2 3

0

2

1 0

4 0 0 1 1 0 0

2 2 1 1

0 0 1 1 0

0 0

2 2
= , = ,

2

= ,    = , = , = ,
2( )

( )
= , = , =

2

     
 

    

 
      

 

   
      

 

 
 





  

 (134) 
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 Substituting these results into Eqs. (125) and (130), 

we find that  

0( ) =
( )

d
W 


 

 
                      (135) 

where 

 

4 3 23 02 1

4 4 4 4

0

4

( ) = ,

=W

  

   





         

   (136) 

Integrating Eq. (135), and inserting the result into Eq. 

(132), then we obtain the exact solutions to Eq. (47). 

Consequently, we achieve the traveling wave solutions to 

the R-NLSE with Kerr law nonlinearity (45) as the 

following:  

When 4

1)(=)(  , then we obtain  

 

1

0 1 1

0

( )2 2 1 1
0 2

0 0

( , ) =
2

i x t

W
q x t

x t

e

   
   

 


  

 

          
    

  
  

   



       (137) 

 

When )()(=)( 2

3

1    and 12 >  , then we 

get  

 

 

2

2 1 1

0 1 1 2
2

1 2 0

( )2 2 1 1
0 2

0 0

4 ( )
( , ) =

4 ( ) 2

i x t

W
q x t

W x t

e

   
   

 

  
  

   

   
       
    

 
 

  
       



 

(138) 

 

 When 2

2

2

1 )()(=)(   , then we have 

 

2 1 1

0 1 2

1 2
0

( )2 2 1 1
0 2

0 0

( )
( , ) =

exp 2 1

i x t

q x t

x t
W

e

   
   

 

  
  

 
 

   
       
    

 
 

 
  

        



 

(139) 

 

 and  

 

1 2 1

0 1 1

1 2
0

( )2 2 1 1
0 2

0 0

( )
( , ) =

exp 2 1

i x t

q x t

x t
W

e

   
   

 

  
  

 
 

   
       
    

 
 

 
  

        



 

(140) 

 

 When ))(()(=)( 32

2

1    and 

321 >>  , then we attain 

 

0 1 1

1

1 2 3 3 2

( )2 2 1 1
0 2

0 0

1 2 1 3

2
( , ) =

2 ( )cosh 2

( )( )

i x t

q x t

x t
W

e

   
   

 

  




     

    

          
    

 
 
  

 
        

  



  

(141) 

 

When ))()()((=)( 4321    and 

4321 >>>  , then we achieve  

 

 

0 1 2

1 1 2 4 2

2

4 2 1 4 0

( )2 2 1 1
0 2

0 0

1 3 2 4

( )( )
( , ) =

( ) 2 ,
2

,

( )( )

i x t

q x t

sn x t l
W

e

   
   

 

  

    

     

   

          
    

 
 

   
        

    

 

   

(142) 

 

 where  

2 2 3 1 4

1 3 2 4

( )( )
=

( )( )
l

   

   

 

 
 

 

 Also, i  1,...,4)=(i  are the roots of the polynomial 

equation 

 

( ) = 0                                 (143) 

 

 When 110 =    and 0=0 , then we can reduce the 

solutions (137)-(141) to plane wave solutions 

 
( )2 2 1 1

0 2
0 01( , ) =

2

i x t
W

q x t e
x t

   
   

 



   
       
     

 
 

    (144) 
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2
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1 2
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0 2
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4 ( )
( , ) =

4 ( ) 2

i x t

W
q x t

W x t

e

   
   

 

  

  

   
       
    

 
 

 
      



            (145) 

 

 singular soliton solutions 
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 2 1 1 1 2

( )2 2 1 1
0 2

0 0
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( , ) = 1 coth 2

2 2
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q x t x t
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e
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 and bright soliton solution  

 
( )2 2 1 1

0 2
0 0
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cosh[ 2 ]
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A
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e

   
   

 



   
       
    

  
 

                  (147) 

where  

 

1 2 1 31 2 1 3 1

3 2

1 2 3

3 2

( )( )2( )( )
= , = ,

2
=

A B
W

D

       

 

  

 

  



 



(148) 

 

 Here, A  is the amplitude of the soliton, while B  is the 

inverse width of the soliton. These solitons exist for 

0<1 . Moreover, when 210 =    and 0=0 , we can 

write the Jacobi elliptic function solution (142) as  

 

1

2 2 3 1 4
1

1 3 2 4

( )2 2 1 1
0 2

0 0

( , ) =
( )( )

2 ,
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j
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D sn B x t

e

   
   

 

   


   

          
    

 
 
 
 

         



 

(149) 

 

where 

  

1 1 2 4 2 4 2

1 1

1 4 1 4

1 3 2 4

( )( )
= , = ,

( 1) ( )( )
= , ( = 1,2)

2

j

j

A D

B j
W

      

   

   

  

 

  
    (150) 

 

Remark-1: When the modulus 1l , we can reduce the 

solution (149) to a second form of singular optical soliton 

solutions as  
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2

1

( )2 2 1 1
0 2

0 0

( , ) =
2tanh j

i x t

A
q x t

D B x t

e

   
   

 



   
       
    

 
 
 

     



            (151) 

 

where 43 =  . 

Remark-2: However, if 0l , we can reduce the 

solution (149) to the periodic singular solutions as  

 

 
1

2

1

( )2 2 1 1
0 2

0 0

( , ) =
2sin j

i x t

A
q x t

D B x t

e

   
   

 



   
       
    

 
 
 

     



            (152) 

 

 where 32 =  . 

5.2. Application to R-NLSE (Power law) 

 

We will now analyze Eq. (62) to construct soliton 

solutions by extended trial equation method. We substitute 

Eqs. (124), (126) and (127) into Eq. (65). Then, we use the 

balance principle and find that 

 

= 2                                       (153) 

 

 Case-1: When 3= , 0=  and 1=  in Eq. (153), we 

have  

0 1=V                                          (154) 

 
2 3 2

2 1 3 2 1 0

0

( )
( ) =V

    



    


          (155) 

 
2

1 3 2 1

0

(3 2 )
=

2
V

   



  
                     (156) 

 

 where 03  , 0.0   Substituting Eqs. (154)-(156) into 

Eq. (65), and solving the resulting system of algebraic 

equations, we find the following results:  

 
2 2

0 2 0 0

0 2

1

2

0 2 0 0

1

1

2

1 0

3

2 0 2

2

0

2 2 0 0 0 0 1 1

(1 )( ) 8
= ,

(1 )( )

2 (1 )( ) 6
= ,

(1 )( )

4
= ,

(1 )( )

3 ( )
= ,

1 4

= , = , = , =

n n

n

n n

n

n

n

n n

     


  

     


  

 


 

   
 



       

    

 

    

 


 


  



         (157) 

 

 Substituting these results into Eqs. (125) and (130), we 

find that  

0 1( ) =
( )

d
W 


 

 
                      (158) 

 where 

  

3 2 02 1

3 3 3

0

1

3

( ) = ,

=W

 

  





       

        (159) 
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Integrating Eq. (158), and inserting the result into Eq. 

(154), and using the transformation nVU 2

1

=  , then we 

attain the exact solutions to Eq. (64). Consequently, we 

write the traveling wave solutions to the R-NLSE with 

power law nonlinearity (62) as the following:  

When 3

1)(=)(  , then we obtain rational function 

solution as follows:  

 

1

2

1 1

0 1 1 2

0

3 ( )2 0 2
21 4

0

4
( , ) =

2

n

i x t
n n

W
q x t

x t

e

   
  




  

 

    
         

  

  
  

   



        (160) 

 

 When )()(=)( 2

2

1    and 12 >  , then we 

have solitary wave solution as follows: 

 

 

1

2
0 1 2

1 22

1 1 2 0

1

3 ( )2 0 2
21 4

0

( , ) = 1
( ) 2tanh

2

n

i x t
n n

q x t
x t

W

e

   
  



  

 
    

    
         

  

 
 

  
      

  



(161) 

 

 When 2

21 ))((=)(    and 21 >  , then we 

attain hyperbolic function solution as follows:  

 

 

1

2
0 1 1

2 1 2

1 1 2

1

3 ( )2 0 2
21 4

0

( , ) = 1
( )cosech 2

2

n

i x t
n n

q x t
x t

W

e

   
  



  

 
   

    
         

  

 
 

  
     

  


(162) 

 

 When ))()((=)( 321   and 

321 >>  , then we have Jacobi elliptic function 

solutions as follows:  

 

1

2
0 1 3

2 1 3

1 2 3 0

1

3 ( )2 0 2
21 4

0

( , ) = 1
( ) 2 ,

2

n

i x t
n n

q x t
sn x t l

W

e

   
  



  

 
    

    
         

  

 
 

  
      

  



(163) 

 

where  

2 2 3

1 3

=l
 

 




                              (164) 

 

 Also, i  1,2,3)=(i  are the roots of the polynomial 

equation 

( ) = 0                                      (165) 

 

 When 110 =    and 0=0 , then we can reduce the 

 solutions (160)-(162) to rational function solution 

 
1

3 ( )2 0 2
21 4

0( , ) =
2

n
i x t

n nA
q x t e

x t

   
  





    
         

  

 
 
 

 
 

       (166) 

 1-soliton solution  

 

 

3 ( )2 0 2
21 4

02

1

3

( , ) =
2cosh

i x t
n n

n

A
q x t e

B x t

   
  





    
         

  

 
 
 

    

 

(167) 

 

 and singular soliton solution  

 

3 ( )2 0 2
21 4

03

1

3

( , ) =
2sinh

i x t
n n

n

A
q x t e

B x t

   
  





    
         

  

 
 
 

    

(168) 

 where  

 

1

2
1 1 2 1 2 1

1

1 22
3 1 1 2 3

1

= 2 , = [ ( )] ,

1
= [ ( )] , =

2

n

n

A W A

A B
W

   

 
  






          (169) 

 

Here, 2A  and 3A  are respectively the amplitudes of 1-

soliton and singular soliton, while 3B  is the inverse width 

of the solitons. These solitons exist for 0>1 . Moreover, 

when 310 =    and 0=0 , we can simplify the Jacobi 

elliptic function solution (163) as follows:  

 

 
1

2 3

4

1 3

3 ( )2 0 2
21 4

0

( , ) = 2 ,n
j

i x t
n n

q x t A sn B x t

e

   
  



 


 

    
         

  

 
 

 



        (170) 

 

where  
1

1 32
4 1 2 3

1

( 1)
= [ ( )] , = , ( = 4,5)

2

j

n
jA B j

W

 
  


  

(171) 

 

Remark-3: When the modulus 1l , dark soliton 

solutions fall out:  
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1

4

3 ( )2 0 2
21 4

0

( , ) = 2tanh n j

i x t
n n

q x t A B x t

e

   
  





    
         

  

  



          (172) 

where 21 =  . 

Case-2: When 4= , 0=  and 2=  in Eq. (153), we 

have  

 
2

0 1 2=V                          (173) 

 
2 4 3 2

2 1 2 4 3 2 1 0

0

( 2 ) ( )
( ) =V

      



        
  

(174) 

 

 

3 2

1 2 4 3 2 1

0

4 3 2

2 4 3 2 1 0

0

( 2 )(4 3 2 )
=

2

2 ( )

V
     



     



       


       


  (175) 

where 04  , 0.0   Substituting Eqs. (173)-(175) into 

Eq. (65), and solving the resulting system of algebraic 

equations, we find the following results:  

 

 

2 2 2

0 0 0 1 0

0 1

2 2

2 2 2
0 1 0 2 1 0

2 3

2

2

2 0

4

2 2

1 2 0

2

0 0 0 0 1 1 2 2

2
= , = ,

(1 )( ) (1 )( )

2 2
= ,    = ,

(1 )( ) (1 )( )

= ,
(1 )( )

4 (1 )
= ,

4 (1 )

= , = , = , =

n n

n n

n n

n n

n

n

n

n

    
 

     

     
 

    

 


 

   




       

 
   


 

   


 

    




(176) 

 Substituting these results into Eqs. (125) and (130), we 

find that  

0 2( ) =
( )

d
W 


 

 
                        (177) 

where  

 

4 3 23 02 1

4 4 4 4

0

2

4

( ) = ,

=W

  

   





         

(178) 

 

Integrating Eq. (177) and taking 0=0 , then we have the 

traveling wave solutions to the R-NLSE with power law 

nonlinearity (62) as the following:  

When 4

1)(=)(  , then we obtain  

 

1

22
2

1

=0

2 24 (1 )
1 2 0

4 (1 )
2

( , ) =
2

i n

i

i

n

i x t
n

W
q x t

x t

e

   

 


 


          
     

   
   

  
  

   




            (179) 

 

When )()(=)( 2

3

1    and 12 >  , then we 

get 

 

1

2
22

2 2 1

1 2
2

=0
2 1 2

2 24 (1 )
1 2 0

4 (1 )
2

4 ( )
( , ) =

4 ( ) 2

i n

i

i

n

i x t
n

W
q x t

W x t

e

   

 


 
 

  

          
     

   
   

  
           




 

(180) 

 

 When 2

2

2

1 )()(=)(   , then we have  

 

1

2

2
2 1

2

=0 1 2

2

2 24 (1 )
1 2 0

4 (1 )
2

( , ) =

exp 2 1

i n

i

i

n

i x t
n

q x t

x t
W

e

   

 


 
 

 


          
     

   
   

  
  
  

         
   




 

(181) 

 

 and  

 

1

2

2
1 2

1

=0 1 2

2

2 24 (1 )
1 2 0

4 (1 )
2

( , ) =

exp 2 1

i n

i

i

n

i x t
n

q x t

x t
W

e

   

 


 
 

 


          
     

   
   

  
  
  

         
   




 

(182) 

 

 When ))(()(=)( 32

2

1    and 

321 >>  , then we attain  

 

 

2 24 (1 )
1 2 0

1
4 (1 )2 22

=0

1

1 2 1 3

1 2 1 3

1 2 3 3 2

2

( , ) = .

2( )( )

( )( )
2 ( )cosh 2

n

i x t
n

n
i

i

i

q x t e

x t
W

   

 






   

   
     

          
     

   
   

 
 

 

 

 


  
     

  



(183) 
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When ))()()((=)( 4321    and 

4321 >>>  , then we achieve  

 

2 24 (1 )
1 2 0

1
4 (1 )2 22

1

=0

1 2

1 2 4 2

1 3 2 42

4 2 1 4

2

( , ) = ,

( )( )

( )( )
( ) 2 ,

2

n

i x t
n

n
i

i

i

q x t e

sn x t l
W

   

 






   

   
    

          
     

   
   

 
 

 

 

 


  
     

  



 

(184) 

 

 where  

 

2 2 3 1 4

1 3 2 4

( )( )
=

( )( )
l

   

   

 

 
                        (185) 

 

 Also, i  1,...,4)=(i  are the roots of the polynomial 

equation 

 ( ) = 0                                      (186) 

 

 Remark-4: When the modulus 1l , the hyperbolic 

function solutions fall out:  

 

 

2 24 (1 )
1 2 0

1
4 (1 )2 22

2

=0

2 2

1 2 4 2

1 3 2 42

4 2 1 4

2

( , ) = ,

( )( )

( )( )
( ) 2tanh

2

n

i x t
n

n
i

i

i

q x t e

x t
W

   

 






   

   
    

          
     

   
   

 
 

 

  

 

  
     

  



(187) 

 

 where 43 =  . 

Remark-5: However, if 0l , the periodic wave solution 

are listed as follows: 

 

 

 

2 24 (1 )
1 2 0

1
4 (1 )2 22

3

=0

3 2

1 2 4 2

1 3 2 42
4 2 1 4

2

( , ) = ,

( )( )

( )( )
( ) 2sin

2

n

i x t
n

n
i

i

i

q x t e

x t
W

   

 






   

   
    

          
     

   
   

 
 

 

 

 


  
     

  



 

(188) 

 

where 32 =  . 

 

 

5.3. Application to R-NLSE (Parabolic law) 

 

 We will now analyze Eq. (77) to construct soliton 

solutions by extended trial equation method. We substitute 

Eqs. (124), (126) and (127) into Eq. (80). Then, we use the 

balance principle and find that 

 

= 2 2                                (189) 

 

 When 4= , 0=  and 1=  in Eq. (189), we have  

 

0 1=V                                  (190) 

 
2 4 3 2

2 1 4 3 2 1 0

0

( )
( ) =V

     



      
        (191) 

3 2

1 4 3 2 1

0

(4 3 2 )
=

2
V

    



    
            (192) 

 

 where 04  , 0.0   Substituting Eqs. (190)-(192) into 

Eq. (80), collecting the coefficients of  , and solving the 

resulting system, we find the following results:  

  

   

 

2 2 3

2 0 0 1 0 0 0

1

0 1

2
1 0 0 1 0

3 4

2 2 2

0 0

0

0 0 2 2 0 0 0 0 1 1

( ) 2 2
= ,

( )

2 3 8 4
= ,  = ,

3( ) 3( )

( )1
= 4 6 8 ,

4

= , = , = , = , =

 

d

d

d d

d

        


  

     
 

 

 
   



         

   




 

 

 
    
 

 (193) 

 

Substituting these results into Eqs. (125) and (130), 

we find that  

 

0 3( ) =
( )

d
W 


 

 
                    (194) 

 

 where  

 

4 3 23 02 1

4 4 4 4

0

3

4

( ) = ,

=W

  

   





         

   (195) 

 

Integrating Eq. (194), and inserting the result into Eq. 

(190), and using the transformation 2

1

= VU  then we get 

the exact solutions to Eq. (79). Consequently, we obtain 

the traveling wave solutions to the R-NLSE with parabolic 

law nonlinearity (77) as the following:  

When 4

1)(=)(  , then we obtain  
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1

2
1 3

0 1 1

0

( )1 2 2 24 6 8
0 04

0

( , ) =
2

d
i x t

W
q x t

x t

e

 
    




  

 

   
        
    

  
  

   



        (196) 

 

 When )()(=)( 2

3

1    and 12 >  , then we 

get  

 

1

2
2

3 2 1 1

0 1 1 2
2

3 1 2 0

( )1 2 2 24 6 8
0 04

0

4 ( )
( , ) =

4 ( ) 2

d
i x t

W
q x t

W x t

e

 
    



  
  

   

           
    

 
 

  
       



 

(197) 

 

 When 2

2

2

1 )()(=)(   , then we have 

 

1

2

2 1 1

0 1 2

1 2
0

3

( )1 2 2 24 6 8
0 04

0

( )
( , ) =

exp 2 1

d
i x t

q x t

x t
W

e

 
    



  
  

 
 

           
    

 
 

 
  

      
  



 

(198) 

 

 and  

 

 

1

2

1 2 1

0 1 1

1 2
0

3

( )1 2 2 24 6 8
0 04

0

( )
( , ) =

exp 2 1

d
i x t

q x t

x t
W

e

 
    



  
  

 
 

           
    

 
 

 
  

      
  



 

(199) 

 

 When ))(()(=)( 32

2

1    and 

321 >>  , then we attain  

 

 

1

2

1 2 1 3 1

0 1 1

1 2 1 3

1 2 3 3 2

3

( )1 2 2 24 6 8
0 04

0

( , ) =

2( )( )

( )( )
2 ( )cosh 2

d
i x t

q x t

x t
W

e

 
    



    
  

   
     

           
    

 
 
   

  
   

      
    



 

(200) 

 

 

When ))()()((=)( 4321    and 

4321 >>>  , then we achieve  

 

1

2

1 1 2 4 2

0 1 2

1 3 2 42

4 2 1 4 0

3

( )1 2 2 24 6 8
0 04

0

( , ) =

( )( )

( )( )
( ) 2 ,

2

d
i x t

q x t

sn x t l
W

e

 
    



    
  

   
     

           
    

 
 
   

  
   

       
    



 

(201) 

 

 where  

 

2 2 3 1 4

1 3 2 4

( )( )
=

( )( )
l

   

   

 

 
                      (202) 

 

 Also, i  1,...,4)=(i  are the roots of the polynomial 

equation  

( ) = 0                                        (203) 

 

 When 110 =    and 0=0 , then we can reduce the 

solutions (196)-(200) to plane wave solutions  
1

2
1 3

( )1 2 2 24 6 8
0 04

0

( , ) =
2

d
i x t

W
q x t

x t

e

 
    







   
        
    

 
 

 



                (204) 

  

 

1

2
2

3 2 1 1

2
2

3 1 2

( )1 2 2 24 6 8
0 04

0

4 ( )
( , ) =

4 ( ) 2

d
i x t

W
q x t

W x t

e

 
    



  

  

           
    

 
 

 
      



       (205) 

 

 singular soliton solutions 

 

 

1

2

2 1 1 1 2

3

( )1 2 2 24 6 8
0 04

0

( )
( , ) = 1 coth 2

2 2

d
i x t

q x t x t
W

e

 
    



    


   
        
    

     
    

    



 

 (206) 

 

 and bright soliton solutions  

 

  

5

1

2
2 6

( )1 2 2 24 6 8
0 04

0

( , ) =

cosh[ 2 ]

d
i x t

A
q x t

D B x t

e

 
    





   
        
    

 
 
 
  
 



         (207) 

 

 where  
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1

2
1 2 1 3 1

5

3 2

1 2 1 3

6

3

1 2 3

2

3 2

2( )( )
= ,

( )( )
= ,

2
=

A

B
W

D

    

 

   

  

 

  
 

 

 

 



              (208) 

 

 Here, 5A  is the amplitude of the soliton, while 6B  is the 

inverse width of the soliton. These solitons exist for 

0<1 . Moreover, when 210 =    and 0=0 , we can 

write the Jacobi elliptic function solution (201) as  

 

6

1

2
2 2 3 1 4

3

1 3 2 4

( )1 2 2 24 6 8
0 04

0

( , ) =

( )( )
2 ,

( )( )
j

d
i x t

A
q x t

D sn B x t

e

 
    



   


   

           
    

 
 
 
 
 
    
          



(209) 

 

 where  
1

2
1 1 2 4 2 4 2

6 3

1 4 1 4

1 3 2 4

3

( )( )
= , = ,

( 1) ( )( )
= , ( = 7,8)

2

j

j

A D

B j
W

      

   

   

   
 

  

  

(210) 

 

Remark-6: When the modulus 1l , a second form of 

singular optical soliton solutions fall out:  

 

  

6

1

2 2
3

( )1 2 2 24 6 8
0 04

0

( , ) =

2tanh j

d
i x t

A
q x t

D B x t

e

 
    





           
    

 
  
 
      



        (211) 

 

 where 43 =  . 

Remark-7: However, if 0l , periodic singular solutions 

are listed as follows:  

 

  

6

1

2 2
3

( )1 2 2 24 6 8
0 04

0

( , ) =

2sin j

d
i x t

A
q x t

D B x t

e

 
    





           
    

 
  
 
      



          (212) 

 

 where 32 =  . 

 

5.4. Application to R-NLSE (Dual power law) 

 

We will now analyze Eq. (99) to obtain soliton 

solutions by extended trial equation method. We substitute 

Eqs. (124), (126) and (127) into Eq. (102). Then, we use 

the balance principle and find that  

 

= 2 2                                       (213) 

 

 When 4= , 0=  and 1=  in Eq. (213), we have 

 

0 1=V                                         (214) 

 
2 4 3 2

2 1 4 3 2 1 0

0

( )
( ) =V

     



      
          (215) 

 

 
3 2

1 4 3 2 1

0

(4 3 2 )
=

2
V

    



    
            (216) 

 

 where 04  , 0.0   Substituting Eqs. (214)-(216) into 

Eq. (102), collecting the coefficients of  , and solving 

the resulting algebraic equations system, we find the 

following results:  

 

 

 

 

2 2

0 0 00 1

1

0 1

22
0 0 00 1

2 2

0

2

1 0 0

0 0 3

2 2

1 0

4 0 0 0 0 1 1

4 2 2 (1 )2
= ,

(1 )(1 2 )( )

4 2 (1 2 ) 5 (1 )
= ,

(1 )(1 2 )( )

4 2 4 (1 )
= , = ,

(1 )(1 2 )( )

4
= ,   = , = , =

(1 2 )( )

n n n

n n d

n n n

n n d

n n n

n n d

n

n d

     


  

    




    
  



 
      



  


  

  


  

  


  


 

2 2

2 0 0 0 1

2 2

0 0

( )
=

1 1 2 4

d

n n n

    
 

 


   

 

(217) 

 

Substituting these results into Eqs. (125) and (130), 

we find that  

 

0 4( ) =
( )

d
W 


 

 
                       (218) 

 where  

 

4 3 23 02 1

4 4 4 4

0

4

4

( ) = ,

=W

  

   





         

(219) 

 

Integrating Eq. (218), and inserting the result into Eq. 

(214), and using the transformation nVU 2

1

=  then we 

attain the exact solutions to Eq. (101). Consequently, we 
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obtain the traveling wave solutions to the R-NLSE with 

dual-power law nonlinearity (99) as the following:  

When 4

1)(=)(  , then we obtain  

 
1

2
1 4

0 1 1

0

2 2 ( )2 0 0 0 1
2 21 1 2 4

0 0

( , ) =
2

n

d
i x t

n n n

W
q x t

x t

e

    
  

 


  

 

    
           

  

  
  

   



          (220) 

 

 When )()(=)( 2

3

1    and 12 >  , then we 

get  

 

 

1

2
2

4 2 1 1

0 1 1 2
2

4 1 2 0

2 2 ( )2 0 0 0 1
2 21 1 2 4

0 0

4 ( )
( , ) =

4 ( ) 2

n

d
i x t

n n n

W
q x t

W x t

e

    
  

 

  
  

   

    
           

  

 
 

  
       


(221) 

 

 When 2

2

2

1 )()(=)(   , then we have  

 

1

2

2 1 1

0 1 2

1 2
0

4

2 2 ( )2 0 0 0 1
2 21 1 2 4

0 0

( )
( , ) =

exp 2 1

n

d
i x t

n n n

q x t

x t
W

e

    
  

 

  
  

 
 

    
           

  

 
 

 
  

      
  



 

(222) 

 and  

 

1

2

1 2 1

0 1 1

1 2
0

4

2 2 ( )2 0 0 0 1
2 21 1 2 4

0 0

( )
( , ) =

exp 2 1

n

d
i x t

n n n

q x t

x t
W

e

    
  

 

  
  

 
 

    
           

  

 
 

 
  

      
  



 

(223) 

 

When ))(()(=)( 32

2

1    and 

321 >>  , then we attain  

 

 

1

2
0 1 1

1 2 1 3 1

1 2 1 3

1 2 3 3 2

4

2 2 ( )2 0 0 0 1
2 21 1 2 4

0 0

( , ) =

2( )( )

( )( )
2 ( )cosh 2

n

d
i x t

n n n

q x t

x t
W

e

    
  

 

  

    

   
     

    
           

  

 
 

  
         
    



 

(224) 

 When ))()()((=)( 4321    and 

4321 >>>  , then we achieve  

 

 

1

2
0 1 2

1 1 2 4 2

1 3 2 42

4 2 1 4 0

4

2 2 ( )2 0 0 0 1
2 21 1 2 4

0 0

( , ) =

( )( )

( )( )
( ) 2 ,

2

n

d
i x t

n n n

q x t

sn x t l
W

e

    
  

 

  

    

   
     

    
           

  

 
 

  
          
    



 

(225) 

 

 where  

2 2 3 1 4

1 3 2 4
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=
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l

   

   

 

 
                      (226) 

 

Also, i  1,...,4)=(i  are the roots of the polynomial 

equation 

 

 ( ) = 0                                 (227) 

 

When 110 =    and 0=0 , then we can reduce the 

solutions (220)-(224) to plane wave solutions  

 
2 2 ( )1 2 0 0 0 1

2 21 1 22 4
0 01 4( , ) =

2

d
i x t

n nn nW
q x t e

x t

    
  

 



    
           

   
 

 
 

(228) 

 

 

1

2
2

4 2 1 1

2
2

4 1 2

2 2 ( )2 0 0 0 1
2 21 1 2 4

0 0

4 ( )
( , ) =

4 ( ) 2

n

d
i x t

n n n

W
q x t

W x t

e

    
  

 

  

  

    
           

  

 
 

 
      



      (229) 

 

 singular soliton solutions 
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(230) 

 

 and bright soliton solutions  
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where 
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(232) 

 

 Here, 7A  is the amplitude of the soliton, while 9B  is the 

inverse width of the soliton. These solitons exist for 

0<1 . Moreover, when 210 =    and 0=0 , we can 

write the Jacobi elliptic function solution (225) as  
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(234) 

 

Remark-8: When the modulus 1l , the hyperbolic 

function solutions fall out:  
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         (235) 

 

where 43 =  . 

Remark-9: However, if 0l , the periodic wave 

solutions are listed as follows:  
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         (236) 

 

 where 32 =  .  

 

5.5. Application to R-NLSE (Log law) 

 

In case of log law nonlinearity, there is no radiation 

and consequently there is no shedding of energy and is 

hence a preferred means of soliton communication. For 

log law nonlinearity,  

 

( ) = lnF s s                                       (237) 

 

So the resonant nonlinear Schrödinger’s equation with 

log law nonlinearity is 

 

 2 | |
ln | | = 0

| |

xx

xxi


      


 
    

 
    (238) 

 

Under the travelling wave transformation  

 
 

( , ) = ( ) ,   = 2
i x t

x t U e x t
  

   
  

        (239) 

 

we have 

 

     2 2 ln = 0U U U U                 (240) 

 

In order to obtain closed form solutions, we use the 

transformation 

1
= expU

V
                                    (241) 

 

 that will reduce Eq. (240) into the ODE  

 

  2 2 2 3 2 4( ) 2 ( ) 2 ( ) = 0V V V V V V V                

(242) 

 

We will now analyze Eq. (242) to secure soliton 

solutions by extended trial equation method. We substitute 

Eqs. (124), (126) and (127) into Eq. (242). Then, we use 

the balance principle and find that  

 

= 2                                       (243) 

 

 Case-1: When 3= , 0=  and 1=  in Eq. (243), we 

have  

0 1=V                                                  (244) 

2 3 2

2 1 3 2 1 0

0

( )
( ) =V

    



    
          (245) 

2

1 3 2 1

0

(3 2 )
=

2
V

   



  
                     (246) 

 where 03  , 0.0   Substituting Eqs. (244)-(246) into 

Eq. (242), and solving the resulting system of algebraic 

equations, we find the following results:  
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Substituting these results into Eqs. (125) and (130), 

we find that  

0 5( ) =
( )

d
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                      (248) 

where  
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W      (249) 

 

Integrating Eq. (248), and inserting the result into Eqs. 

(241) and (244), then we attain the exact solutions to Eq. 

(240). Consequently, we have the exact solutions to the R-

NLSE with log law non 

linearity (238) as the following:  

When 3

1)(=)(  , then we obtain 
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 When )()(=)( 2

2

1    and 12 >  , then we 

have  
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 When 2

21 ))((=)(    and 21 >  , then we 

attain  
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 When ))()((=)( 321    and 

321 >>  , then we get  
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 where  

2 2 3

1 3
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                                (254) 

 

 Also, i  1,2,3)=(i  are the roots of the polynomial 

equation  

 

( ) = 0                                     (255) 

 

When 110 =    and 0=0 , then we can reduce the 

solutions (250)-(252) to the following exact solutions, 

respectively:  
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and  
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Moreover, when 310 =    and 0=0 , we can 

simplify the exact solutions (253) as follows:  
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Remark-10: When the modulus 1l , we can write the 

solutions (259) as 
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where 21 =  . 

Case-2: When 4= , 0=  and 2=  in Eq. (243), we 

have  
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 where 04  , 0.0   Substituting Eqs. (261)-(263) into 

Eq. (242), and solving the resulting system of algebraic 

equations, we find the following results:  
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Substituting these results into Eqs. (125) and (130), 

we find that  
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where  
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Integrating Eq. (265) and taking 0=0 , then we have 

the exact solutions to the R-NLSE with log law 

nonlinearity (238) as the following:  

When 4

1)(=)(  , then we obtain  
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 When )()(=)( 2
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1    and 12 >  , then we 
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 When 2
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 When ))(()(=)( 32
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321 >>  , then we attain 

 

  

1

2
1 2 1 3

1

=0
1 2 1 3

1 2 3 3 2

6

2

( , ) =

2( )( )
exp

( )( )
2 ( )cosh 2

i

i

i

i x t

q x t

x t
W

e
   

   
 

   
     



   

  
  
   
  
    
       

      





 

(271) 

 

 When ))()()((=)( 4321    and 

4321 >>>  , then we achieve  
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 where 
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 Also, i  1,...,4)=(i  are the roots of the polynomial 

equation  

( ) = 0                                     (274) 

 

Remark-11: When the modulus 1l , we write the 

solutions (272) as  
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where 43 =  . 

Remark-12: However, if 0l , we write the solutions 

(272) as  
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(276) 

 

 where 32 =  . 

 

6. Conclusion 
 

We used the FIM for acquiring several new exact 

solutions of RNLSE with power law nonlinearity and time 

dependent coefficients. We have acquired different types 

exact solutions which are rational, dark, dark-bright 

optical combo and new as our research from literature. It is 

illustrated velocity functions  w t  and  v t  is related 

with the group velocity term  a t . Consequently, the 

FIM is crucial one to construct different types of the exact 

solutions of the NPDE and systems. 
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